

Human Exploration of Mars: Challenges, Opportunities, and Progress

Janet L. Kavandi, Ph.D. Director, John H. Glenn Research Center Cleveland, Ohio

Presented at 254th ACS National Meeting and Exposition, August 22, Washington, DC

Journey to Mars

Now

Using the International Space Station 2020s Operating in the Lunar Vicinity (proving ground) After 2030 Leaving the Earth-Moon System and Reaching Mars Orbit

Phase 0 Continue research and testing on ISS to solve exploration challenges. Evaluate potential for lunar resources. Develop standards.

Phase 1

Begin missions in cislunar space. Build Deep Space Gateway. Initiate assembly of Deep Space Transport. Phase 2

Complete Deep Space Transport and conduct yearlong Mars simulation mission. Phases 3 and 4

Begin sustained crew expeditions to Martian system and surface of Mars.

Key Challenges for Human Exploration of Mars

Transportation

In-space Propulsion

Entry, Descent, and Landing

Communication and Navigation

Human Robotics/Autonomous System

In-situ Resource Utilization

Surface Power

Habitats and Surface Mobility

Crew Health

Focus of This Presentation

- In-space propulsion
- Surface power
- In-situ resource utilization
- Crew health
- Materials technologies

National Aeronautics and Space Administration Deep Space Gateway and Deep Space Transport

Solar Electric Propulsion (SEP)

Solar Electric Propulsion Evolution

2015-2020: 50kW Class capability

2030-2040: 100 -500 kW Class capability payloads)

•2008 SMART-1: 1.5kW ESA Tech demo, lunar science

•2007 Dawn: 2kW (10kW @ 1AU) NASA science mission,

•2003 Hayabusa: 2kW JAXA Tech demo, asteroid sample/return

1998 Deep Space-1: 2kW NASA Tech demo, asteroid comet flyby

Challenges for High Power Solar Electric Propulsion:

- Lightweight, deployable solar arrays
- High power density electric propulsion and power processing unit
- Long-term durability

Life Limiting Mechanism in Hall Thrusters

Degradation of discharge wall due to interaction within plasma

- Life limiting mechanism is erosion of discharge channels due to ion impact
- Ions cause sputtering of ceramic discharge channel walls
- Research on understanding and modeling interaction of ions with materials
- Need better materials with (1) high voltage isolation capability, (2) low sputter yield at all temperatures, and (3) low secondary electron emission

Surface Power on Mars

Regenerative Fuel Cell for Surface Power

Batteries for EVA

B

Batteries for Rovers and Mobility System

Fuel Cell for Mobile Systems

Development of 1-10 kWe Fission Power System

Variable conductance heat pipe radiator

- Compact, low-cost, scalable fission power system that provides modular options for Mars surface operations
- Enabled by novel integration of available U235 fuel form, passive heat pipes, and flight-ready stirling converters for converting heat to electricity

Reactor core, sodium heat pipe, and stirling converter

Progress in kWe Fission Power System

Notional Flight System Concept

hermal Prototype & Materials Testing (2015) hermal-Vac System Tes with Depleted Uranium Core at GRC (2016)

Reactor Prototype Test with Highly-Enriched Uranium Core at NNSS (October 2017 – February 2018)

Verify system-level performance of flight-like U-Mo reactor core, sodium heat pipes, and Stirling power conversion at prototypic operating conditions (temperature, heat flux, power) in vacuum Establish technical foundation for 1 to 10 kW-class fission power systems

Fuel Cell for Rovers and Surface Power

Fuel Cell: $H_2 + \frac{1}{2}O_2 = H_2O$ Electrolyzer: $H_2O = H_2 + \frac{1}{2}O_2$

Regenerative Fuel Cell

Progress and Challenges in Development of Fuel Cell for Space Power Application

Successful demonstration of 1 kW power, non flow-through Proton Exchange Membrane (PEM) fuel cell in Scarab rover field demonstration

Goals:

- Power level of 10 kW
 - 12 years operational life, > 60,000 hr for fuel cell and > 46,000 hr for electrolyte

> 100 W/kg for fuel cell and > 30W/kg for regenerative fuel cell

Challenges and Opportunities:

- Increasing power density by incorporation of lightweight materials and integration of components
- Thermal management decreasing the size of the radiator
- Understanding and modeling of degradation mechanisms and finding solutions to improve durability
 - Understanding of degradation of polymer membrane due to chemical interaction and mechanical stresses and of catalysts due to oxidation of carbon and loss of Pt catalyst
- New materials to minimize degradation of polymer membrane, catalyst, and gas diffusion layer

Batteries for Mars Surface Applications

- Batteries with energy densities greater than 300 wh/kg needed for Mars surface applications
- Li-S and Li-air are candidates

Solid state Li-S battery under development

In-Situ Resource Utilization (ISRU) on Mars

Resource Assessment (Prospecting)

Assessment and mapping of physical, mineral, chemical, and water resources, terrain, geology, and environment

Resource Acquisition

Excavation, drilling, atmosphere collection, and preparation/ beneficiation before processing

Resource Processing/ Consumable Production

Extraction and processing of resources into products with immediate use or as feedstock for construction & manufacturing

Propellants, life support gases, fuel cell reactants, etc.

In Situ Manufacturing

Production of replacement parts, complex products, machines, and integrated systems from feedstock derived from one or more processed resources

In Situ Construction

Civil engineering, infrastructure emplacement and structure construction using materials produced from *in situ* resources

Radiation shields, landing pads, roads, berms, habitats, etc.

In Situ Energy

Generation and storage of electrical, thermal, and chemical energy with *in situ* derived materials

Solar arrays, thermal storage and energy, chemical batteries, etc.

ISRU Propellant Production System for Mars Ascent Vehicle

- Methane and oxygen can be produced using resources available on Mars (water from soil and carbon dioxide from Mars atmosphere)
- Mass savings in LEO is about 10kg per every 1 kg of propellant produced
 - Reduces cost and eliminates several heavy lift launch vehicles

Chemistry of Mars ISRU

Resources:

- Water in Mars soil
- Carbon dioxide in Mars atmosphere

Oxygen and hydrogen production: $CO_2 = CO + 1/2O_2$ $H_2O = H_2 + 1/2O_2$

Methane production: $CO_2 + 2H_2O = CH_4 + 2O_2$ $CO_2 + 4H_2 = CH_4 + 2H_2O$ $CO + 3H_2 = CH_4 + H_2O$

Other hydrocarbon fuel production: $CO + 2H_2 = CH_3OH$ $CO_2 + 3H_2 = CH_3OH + H_2O$

Human Research Program How Astronauts are Affected by Space Exploration

Bone

Sensory Motor

Cardiovascular

Radiation

Sleep Cycle

GOALS OF HRP

Food & Nutrition

Medical Care

Muscle

Exercise

►

Digital Astronaut – Biomechanical Modeling

Carbon Nanotube(CNT) -Reinforced Polymer Matrix Composites - Next Generation of Structural Composites

20

Shape Memory Alloys for Actuation Devices

NASA

Alloys that have a "memory." These materials can be deformed at low temperature and they will recover their original shape upon heating.

Advantages:

- High force to weight ratio
- Lower volume and weight
- No hydraulic actuation
- Robust performance in harsh environments
- No lubrication required
- Some alloys have
 superelastic properties

Deployable Structure

Robot Arm

Actuation

Smart Rover Tire

Movie on performance of shape memory alloy rovers in rough terrain

Chemistry and materials play an important role in Mars exploration:

- Improving durability of thrusters used for in-space propulsion
- Chemically compatible materials for fission power
- Developing fuel cells with higher power density and long-term durability
- Increasing specific energy of batteries
- Developing high temperature chemical processes for in-situ resource utilization
- Keeping astronauts healthy
- Developing lightweight and smart materials for reducing weight